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Nanoindentation experiments have become a com-
monly used technique to investigate the mechanical
properties of thin films and small volumes of mate-
rials. A power-law load–displacement (P–h) relation is
generally used in the interpretation of naonindentation
experimental data [1]. The power-law assumption has
been proved to be true for flat-ended, spherical, and con-
ical indenters [2]. However, there is no study on whether
this assumption is valid for other smooth indenters. In
this paper, a general polynomial indenter is considered.
For a power-law indenter, its load–displacement fol-
lows a power-law relationship. It becomes complicated
for a non-power-law polynomial indenter. An algebraic
equation has to be solved in order to obtain the load–
displacement relationship, which is not a power-law
formula. This leads to the conclusion that the load–
displacement for a smooth indenter does not necessarily
follow a power-law relation.

We consider a rigid smooth frictionless axisymmet-
ric indenter with its axis of revolution as the z-axis
indenting normally into the plane z = 0 of an elas-
tic half-space z ≥ 0. The problem is considered in the
linear theory of elasticity and the half-space is as-
sumed to be isotropic and homogeneous. The contact
region between the indenter and the half-space is sim-
ply connected.

The following equations give the relevant displace-
ment and stresses for the half-space. The vertical
component of the displacement is denoted by uz ,
and the stress components have two subscripts corre-
sponding to the appropriate coordinates. E and ν are
Young’s modulus and Poisson’s ratio of the half-space,
respectively.

As Fig. 1 shows, the boundary conditions for the
half-space at z = 0 are

τzr = τzθ = 0 (0 ≤ r < ∞) (1)

σzz = 0 (r > a) (2)

uz = h +
αn∑

α=α1

aαrα (0 ≤ r ≤ a) (3)

where α is a positive real number. The second term on
the right-hand side of Equation 3 describes the indenter
shape. If it is zero, Equation 3 refers to a flat-ended
indenter.

If an indenter is not flat-ended, its radius of contact
area, a, and its depth of penetration, h, are related by

the following equation [3]:
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The total vertical load, P , which causes the displace-
ment, h, is
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(5)

From Equation 4, Equation 5 can be rewritten as the
following format:
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(6)

As special cases of the general solution, power-law,
polynomial and smooth indenters are considered in the
following discussions.

The vertical displacement due to the penetration of a
power-law indenter is

uz = h + aαrα (0 ≤ r ≤ a) (7)

where α is a positive real number and the indenter shape
is described by a single term. When α = 1, Equation 7
refers to a conical indenter; and, when α = 2, it is for
a parabolic indenter.

From the contact radius and the indentation depth
relationship, we have
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[
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1
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Putting Equation 8 into the load–displacement relation,
we have
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) 1
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Figure 1 Normal indentation of an elastic half-space.

Equation 9 shows that for a power-law indenter, its
load–displacement follows a power-law relationship.

The vertical displacement due to the penetration of a
general polynomial indenter is

uz = h +
n∑

i=1

air
i (0 ≤ r ≤ a) (10)

where at least two of the ai (i = 1, 2, . . . , n) are not
zero. This restriction excludes the power-law indenter
cases.

From Equation 4, we have

2√
π

h +
n∑

i=1

(1 + i) ai
�((2 + i)/2)

�((3 + i)/2)
ai = 0. (11)

From Equation 11, we can express the contact area by
the indentation depth as a function a = a(h). It will be
difficult if Equation 11 is an algebraic equation of high
order. If we put the function a = a(h) into Equation 5,

we would obtain the load–displacement relation. For
a non-power-law polynomial indenter described by
Equation 10, it is obvious that its load–displacement
curve does not follow a power-law relationship.

A smooth indenter can be described as a solid of
revolution of a smooth function, and this function can
be expanded mathematically as a polynomial series,
i.e., Maclaurin series. Because the load–displacement
(P–h) curve for a polynomial indenter does not always
follow a power-law relation, the P–h relation for a
smooth indenter is not necessarily a power-law formula.

References
1. M. R . V A N L A N D I N G H A M , J. Res. Natl. Inst. Stand. Technol.

108 (2003) 249.
2. I . N . S N E D D O N , Int. J. Eng. Sci. 3 (1965) 47.
3. G . F U and A. C H A N D R A , J. App. Mech. ASME 69 (2002) 142.

Received 19 January
and accepted 26 February 2004

3798


